Как называются все части руки человека

Строение кисти, плеча и предплечья человека: названия мышц. Функции руки, ее кровоснабжение и иннервация. Кости, суставы и связки кисти, предплечья и плеча.

Рука человека

Человеческий организм – сложная система, в которой каждый механизм – орган, кость или мышца – имеет строго определенное место и функцию. Нарушение того или иного аспекта может привести к серьёзной поломке – болезни человека. В данном тексте будет подробно рассмотрено строение и анатомия костей и других частей рук человека.

Содержание

Внутреннее строение тела человека: название базовых частей правой, левой руки, особенности, фото

Название базовых частей правой, левой руки
Название базовых частей правой, левой руки
Внутреннее строение тела человека изучает такая наука, как анатомия. Руки – верхняя конечность тела человека, которая позволяет брать предметы, трогать их и оценивать. Ниже вы найдете название базовых частей правой, левой руки и их особенности. Опорно-двигательная конечность состоит из нескольких тканей:

  • Кости – твердый орган, выполняющий опорно-двигательную функцию. Служит каркасом для всех остальных элементов руки.
  • Мышцы – орган, который состоит из мышечной ткани. Они участвуют в опорно-двигательной системе и передаче нервных импульсов.
  • Связки – орган, представляющей образование соединительной ткани. Они скрепляют скелет человека и внутренние органы.
  • Хрящи – упругая соединительная ткань. Внутри хрящевого соединения отсутствуют кровеносные сосуды и нервы.
  • Сухожилия – образования из соединительной ткани.
  • Кровеносные капилляры – тонкие сосуды, которые участвуют в процессе кровообращения.
  • Нервные волокна – отростки нервных клеток. Их главная роль распространять нервные импульсы.

Как и любая сложная структура в человеческом организме правая и левая рука состоит из базовых отделов. Подробнее смотрите на фото выше. Отделы руки человека:

  • Плечевой пояс
  • Плечо
  • Предплечье
  • Кисть

Каждая зона имеет соединение с другим отделом посредством сустава. Это обеспечивает подвижность верхних конечностей. В одной руке человека насчитывается 32 кости.

Биомеханика опорно-двигательного аппарата человека

5.1. Состав опорно-двигательного аппарата человека

Опорно-двигательный аппарат (ОДА) человека состоит из двух частей: пассивной и активной.

Пассивная часть ОДА содержит следующие элементы:

  • кости скелета — 206 костей (85 парных и 36 непарных).
  • соединения костей (непрерывные, полупрерывные и прерывные) – анатомические образования, позволяющие объединять кости скелета в единое целое, удерживая их друг возле друга и обеспечивая им определенную степень подвижности. Биомеханика ОДА рассматривает в основном прерывные соединения костей – суставы.
  • связки – упругие образования, служащие для укрепления соединения костей и ограничения подвижности между ними.

Активная часть ОДА содержит следующие элементы:

  • скелетные мышцы (более 600).
  • Двигательные нервные клетки (мотонейроны). Двигательные нейроны расположены в сером веществе спинного и продолговатого мозга. По длинным отросткам (аксонам) этих клеток к мышцам поступают сигналы из центральной нервной системы (ЦНС).
  • Рецепторы ОДА. Различные рецепторы, расположенные в мышцах, сухожилиях и суставах информируют ЦНС о текущем состоянии элементов ОДА.
  • Чувствительные нейроны (афферентные нейроны). По чувствительным нервным клеткам информация от рецепторов мышц, сухожилий и суставов поступает в ЦНС. Тела чувствительных нейронов вынесены за пределы ЦНС и лежат в чувствительных узлах спинномозговых и черепных нервов (ганглиях).

Биомеханическими функциями ОДА являются:

  • опорная – обеспечивает опору для мягких тканей и органов, а также удержание вышележащих сегментов тела;
  • локомоторная (двигательная) – обеспечивает перемещение тела человека в пространстве;
  • защитная – защищает внутренние органы от повреждений.

С точки зрения биомеханики, опорно-двигательный аппарат человека представляет собой управляемую систему подвижно соединенных тел, обладающих определенными размерами, массами, моментами инерции и снабженных мышечными двигателями.

Рекомендую обратить внимание на учебные пособия «Биомеханика мышц» и «Гипертрофия скелетных мышц человека«

5.2. Строение, функции и механические свойства элементов ОДА человека

5.2.1. Кости

Кость – элемент ОДА человека, представляющий собой жесткую конструкцию из нескольких материалов, различных по механическим свойствам. В основном кость состоит из костной ткани, которую сверху покрывает соединительнотканная оболочка – надкостница. Костная ткань образована плотным компактным и рыхлым губчатым веществом. Суставные поверхности кости покрыты суставным хрящом.

Различают механические функции костей скелета (опорную, локомоторную и защитную) и биологические (участие в минеральном обмене, кроветворную и иммунную). В биомеханике ОДА рассматриваются механические функции костей и связанные с ними механические свойства.

Опорная функция костей связана с их центральным положением внутри каждого сегмента тела человека, которое обеспечивает механическую опору другим элементам ОДА: мышцам и связкам. Кроме того, кости нижних конечностей и позвоночника обеспечивают опору для вышележащих сегментов тела. Скелетные мышцы приводят в движение костные рычаги или обеспечивают сохранение равновесия. Благодаря этому возможно выполнение двигательных действий и статических положений. В этом проявляется локомоторная функция костей. Кости черепа, грудной клетки и таза защищают внутренние органы от повреждений. В этом проявляется защитная функция костей.

Механические свойства костей определяются их разнообразными функциями. Кости ног и рук состоят из плотной костной ткани. Они продолговатые и трубчатые по строению, что позволяет, с одной стороны, противодействовать значительным внешним нагрузкам, а с другой – более чем в два раза уменьшить их массу и моменты инерции.

Основным механическим свойством костной ткани является прочность – способность материала сопротивляться разрушению под действием внешних сил. Прочность материала характеризуется пределом прочности – отношением нагрузки, необходимой для полного разрыва (разрушения испытуемого образца) к площади его поперечного сечения в месте разрыва.

Различают четыре вида механического воздействия на кость: растяжение, сжатие, изгиб и кручение.

Прочность костной ткани при растяжении составляет от 125 до 150 МПа. Она выше, чем у дуба и почти такая же, как у чугуна. При сжатии прочность костей еще выше. Ее значения равны 170 МПа. Несущая способность костей при изгибе значительно меньше. Например, бедренная кость выдерживает нагрузку на изгиб до 2500 Н. Подобный вид деформации широко распространен, как в обычной жизни, так и в спорте. Например, при удержании спортсменом положения «крест» на кольцах происходит деформация костей верхней конечности на изгиб.

При движениях кости не только растягиваются, сжимаются и изгибаются, но и скручиваются. Прочность кости при кручении составляет 105,4 МПа. Она наиболее высока в 25-35 лет. С возрастом этот показатель снижается до 90 МПа.

Механические нагрузки, действующие на человека при занятиях спортом, превышают повседневные. Чтобы им противостоять, в костях происходит ряд изменений: меняются их форма и размеры а также повышается плотность костной ткани. Так, например, у тяжелоатлетов сильно меняется форма лопатки и ключицы. У теннисистов увеличиваются размеры костей предплечья, у штангистов и метателей диска утолщаются кости бедра, у бегунов и хоккеистов – кости голени, у футболистов – кости стопы (В.И. Козлов, А.А. Гладышева, 1977).

5.2.2. Суставы

Сустав – элемент ОДА, обеспечивающий соединение костных звеньев и создающий подвижность костей друг относительно друга. Суставы являются наиболее совершенными видами соединения костей. У человека их около 200.

Сустав образуют суставные поверхности сочлененных костных звеньев. Между суставными поверхностями имеется суставная полость, в которую поступает синовиальная жидкость. Окружает сустав суставная капсула, состоящая из плотной соединительной ткани.

Основной функцией суставов является обеспечение подвижности костных звеньев друг относительно друга. С этой целью поверхность суставов смачивается синовиальной жидкостью (смазкой), которая выделяется суставным хрящом при увеличении нагрузки на сустав. При уменьшении нагрузки синовиальная жидкость поглощается суставным хрящом. Чтобы компенсировать разрушение суставного хряща при трении в нем постоянно происходят процессы регенерации.

Присутствие синовиальной жидкости обеспечивает низкий коэффициент трения в суставе (от 0,005 до 0,02). Напомним, что коэффициент трения при ходьбе (резина по бетону) составляет 0,75.

Прочность суставного хряща составляет 25,5 МПа. Если давление на суставной хрящ превышает эти показатели, смачивание суставного хряща синовиальной жидкостью прекращается и увеличивается опасность его механического стирания. В среднем и пожилом возрасте выделение синовиальной жидкости в суставную полость уменьшается.

Опорно-двигательный аппарат человека с позиции теории машин и механизмов, можно рассматривать как сложный биомеханизм, состоящий из жестких звеньев (костей) и кинематических пар определенных классов (суставов). С этой точки зрения различают:

Одноосные суставы. Движения в них происходят только вокруг одной оси. Эти суставы обладают одной степенью свободы. В организме человека таких суставов насчитывается 85.

Двуосные суставы. Движения в них происходят вокруг двух осей. Эти суставы обладают двумя степенями свободы. В организме человека 33 двуосных сустава.

Многоосные суставы. Движения в них происходят вокруг трех осей. Эти суставы обладают тремя степенями свободы. В организме человека таких суставов 29.

Для определения числа степеней свободы ОДА человека применяют формулу Сомова-Малышева.

Число степеней свободы для модели тела человека с 148 подвижными звеньями составляет: n = 6 × 148 — 5 × 85 — 4 × 33 — 3 × 29 = 244. Это означает, что для описания положения модели тела человека в каждый момент времени необходимо иметь 244 уравнения.

Для количественных оценок параметров движения важно знать положение мгновенных осей вращения в суставе, так как это влияет на значение плеч сил отдельных мышц. Мгновенные оси вращения в суставах могут смещаться. Это происходит из-за того, что в суставах могут осуществляться три типа движения сочленяющихся поверхностей: скольжение, сдвиг и качение. Возможность таких движений обусловлена тем, что соприкасающиеся суставные поверхности не тождественны по форме.

Под влиянием занятий спортом адаптация суставов ОДА происходит разнонаправленно: в одних суставах подвижность увеличивается, в других – уменьшается. Так, у велосипедистов наибольшая подвижность отмечается в голеностопном суставе и наименьшая – в тазобедренном и плечевом (М.Г.Ткачук, И.А.Степаник, 2010).

5.2.3. Сухожилия и связки

Сухожилие – компонент мышцы, обеспечивающий ее соединение с костью. Основной функцией сухожилия является передача усилия мышц кости. Связки – компонент сустава, обеспечивающий его стабилизацию, посредством удержания костных звеньев в непосредственной близости друг относительно друга.

Сухожилия и связки характеризуются следующими механическими свойствами: прочностью, значением относительной деформации (ε), а также упругостью, которую численно характеризует модуль продольной упругости (модуль Юнга).

Сухожилие состоит из пучков коллагеновых волокон, которые составляют 94% от всего сухожилия (С.П. Габуда с соавт. 2005). Между коллагеновыми волокнами располагаются сухожильные клетки (фиброциты). При повреждении сухожилия фиброциты активируются и синтезируют коллаген для новых коллагеновых волокон. Пучки коллагеновых волокон окружает рыхлая соединительная ткань, в которой проходят кровеносные сосуды и нервы. Основное свойство коллагена – высокая прочность на разрыв и небольшая относительная деформация (ε ≈ 10%).

Связки, как и сухожилия, состоят главным образом из пучков коллагеновых волокон, расположенных параллельно друг другу. Однако в отличие от сухожилий в состав связок входит достаточное большое количество волокон эластина. Эластин – упругий белок, который может очень сильно растягиваться (относительная деформация составляет 200-300%).

Более подробно функционирование опорно-двигательного аппарата человека и биомеханика мышц описаны в книге

«Биомеханика опорно-двигательного аппарата человека»

Механические свойства сухожилий и связок зависят от их размеров и состава. Чем больше поперечное сечение и больший процент коллагеновых волокон – тем выше прочность. Чем связка длиннее, и чем больше в ней волокон эластина – тем большей значение относительной деформации.

Прочность сухожилий составляет 40-60 МПа, а связок – 25МПа. Следует заметить, что предел прочности каната из хлопка на растяжение составляет 30-60 МПа.

Значительно снижает прочность связок и сухожилий иммобилизация. И, наоборот, при исследовании животных была найдена связь между уровнем физической активности и прочностью сухожилий и связок. Доказано, что в подавляющем большинстве случаев прочность сухожилий более высока, чем прочность их прикрепления к костям. Поэтому при травмах сухожилий они не разрываются, а отрываются от места прикрепления. Следует учитывать также, что в процессе тренировок прочность сухожилий и связок увеличивается сравнительно медленно. При форсированном развитии скоростно-силовых качеств мышц может возникнуть несоответствие между возросшими скоростно-силовыми возможностями мышечного аппарата и недостаточной прочностью сухожилий и связок. Это грозит потенциальными травмами (А.С. Аруин, В.М. Зациорский, В.Н. Селуянов, 1981).

Модуль Юнга (Е) численно равен напряжению, увеличивающему длину образца в два раза. Модуль Юнга для костной ткани составляет 2000МПа, а сухожилия – 160МПа. Материал коллаген характеризуется значением модуля Юнга равным 10-100 МПа, а эластин – 0,5 МПа. Следует отметить, что значение модулем Юнга для резины составляет 5МПа, а для древесины – 1200 МПа (В.И. Дубровский, В.Н. Федорова, 2003).

Связки и сухожилия характеризуются нелинейными свойствами – модуль упругости изменяется по мере изменения их длины.

5.3. Биомеханические свойства и особенности строения ОДА человека

На биомеханические свойства ОДА человека оказывают влияние особенности его строения.

Во-первых, костные звенья и соединяющие их суставы представляют собой рычаги. Это означает, что результирующее действие мышцы при вращательных движениях, каковыми являются движения звеньев тела в организме человека, определяется не силой, а моментом силы (произведением силы тяги мышцы на ее плечо). Момент силы мышцы будет максимальным, если в фазы движения, соответствующие максимальным значениям силы мышц, будут достигаться максимальные значения плеч сил мышц. Однако изучение изменения длины и плеча силы тяги при выполнении двигательных действий показало (И.М. Козлов, 1984), что опорно-двигательный аппарат человека и животных устроен так, что у большинства односуставных мышц (мышц, обслуживающих движения в одном суставе) уменьшение длины мышцы (падение силы тяги) компенсируется увеличением плеча силы. Это позволяет сохранить значение суставного момента постоянным на протяжении значительного диапазона изменения длины мышцы. Для двусуставных мышц (мышц, обслуживающих движения в двух суставах) уменьшение плеча силы тяги в одном сочленении сопровождается увеличением этого параметра относительно другого сустава.

Во-вторых, ОДА человека и животных устроен таким образом, что сила мышцы, как правило, приложена на более коротком плече рычага. Поэтому мышцы, действующие на костные рычаги, почти всегда имеют проигрыш в силе, однако выигрывают в перемещении и скорости (А. В. Самсонова, Е. Н. Комиссарова, 2011; Н.Б. Кичайкина, А.В.Самсонова, 2014).

Третья особенность функционирования ОДА человека и животных проявляется в том, что мышцы, обеспечивающие движения в суставах могут только тянуть, но не толкать. Поэтому для того, чтобы осуществлять движения в противоположных направлениях, необходимо, чтобы движение звеньев тела осуществлялось мышцами-антагонистами. Следует отметить, что мышцы-антагонисты обеспечивают не только движения звеньев тела в различных направлениях, но также и высокую точность двигательных действий. Это связано с тем, что звено необходимо не только привести в движение, но и затормозить в нужный момент времени.

Четвертой особенностью строения ОДА человека и животных является наличие мышц-синергистов. Наш опорно-двигательный аппарат устроен таким образом, что перемещение костных звеньев в одном направлении может осуществляться под действием различных мышц. Мышцы-синергисты перемещают звенья в одном направлении и могут функционировать как вместе, так и по отдельности. В результате синергетического действия мышц увеличивается их результирующая сила. Если же мышца травмирована или утомлена ее синергисты обеспечат выполнение двигательного действия.

Пятой особенностью строения ОДА человека и животных является наличие мышц, обладающих различной структурой: с параллельным и перистым ходом мышечных волокон. Установлено, что мышцы, имеющие параллельный ход мышечных волокон выигрывают в скорости сокращения, по сравнению с перистыми мышцами. Однако мышцы, обладающие перистым строением, дают выигрыш в силе. Поэтому антигравитационные мышцы – то есть мышцы, противодействующие силе тяжести, расположенные на нижней конечности имеют перистую структуру.

5.4. Биомеханика мышц

5.4.1. Виды работы мышц и режимы мышечного сокращения

Различают два вида работы мышц:

  • статическая (звенья ОДА фиксированы, движение отсутствует);
  • динамическая (звенья ОДА перемещаются относительно друг друга).

Различают три режима мышечного сокращения:

  • изометрический – режим мышечного сокращения, при котором момент силы мышцы равен моменту внешней силы (длина мышцы не изменяется). Изометрический режим соответствует статической работе.
  • преодолевающий (концентрический) – режим мышечного сокращения, при котором момент силы мышцы больше момента внешней силы (длина мышцы уменьшается).
  • уступающий (эксцентрический) – режим мышечного сокращения, при котором момент силы мышцы меньше момента внешней силы (длина мышцы увеличивается).

Преодолевающий и уступающий режимы соответствуют динамической работе. Тренировка с использованием различных режимов мышечного сокращения может привести к различным тренировочным эффектам. Так, использование уступающего режима мышечного сокращения по сравнению с преодолевающим, приводит к большей гипертрофии скелетных мышц.

5.4.2. Биомеханические свойства мышц

Биомеханические свойства скелетных мышц – это характеристики, которые регистрируют при механическом воздействии на мышцу.

К биомеханическим свойствам мышц относят: сократимость, жесткость, вязкость, прочность и релаксацию.

Сократимость

Сократимость – способность мышцы укорачиваться при возбуждении, в результате чего возникает сила тяги. Скелетные мышцы состоят из мышечных волокон. Мышечные волокна состоят из миофибрилл. Миофибриллы состоят из саркомеров. Саркомеры состоят из толстых и тонких филаментов. Более подробно строение саркомера описано в статье А.В. Самсоновой, Г.А. Самсонова (2016).

Установлено, что во время сокращения (укорочения) саркомера длина толстого и тонкого филаментов не изменяется. При этом неизменной особенностью сокращения является центральное положение толстого филамента в саркомере, посередине между Z-дисками, рис.5.1.

Рис.5.1. Схема строения саркомера (G.H. Pollak, 1990)

Исходя из этих наблюдений, была выдвинута «теория скользящих нитей». В соответствии с этой теорией изменение длины саркомера обусловлено скольжением толстого и тонкого филаментов относительно друг друга (H.E. Huxley, J. Hanson., 1954; A.F. Huxley R. Niedergerke, 1954). Процесс сокращения происходит следующим образом. При активации мышцы, прикрепленные к противоположным Z-мембранам тонкие филаменты скользят вдоль толстых. Скольжение происходит благодаря наличию выступов (головок) на нитях миозина, получивших название поперечных мостиков. Так как при сокращении мышцы расстояние между Z-мембранами уменьшается, происходит уменьшение длины мышцы. В виду того, что саркомер представляет собой не плоскую, а объемную структуру, при сокращении мышцы происходит не только уменьшение ее длины, но и увеличение ее поперечного сечения (когда тонкие нити втягиваются в толстые).

Установлено, что зависимость сила, развиваемая саркомером, зависит от его длины. Выявлено, что существуют критические значения длины саркомера, при которых развиваемая им сила падает до нуля. Первое критическое значение длины саркомера равно 1,27 мкм. Оно соответствует максимальному укорочению мышцы. В этом состоянии мышцы регулярность расположения нитей нарушается, они искривляются. Второе критическое значение длины равно 3,65 мкм. Оно соответствует максимальному удлинению мышцы (перекрытия толстых и тонких филаментов нет). Если длина саркомера больше 1,27 мкм и меньше чем 3,65 мкм, значение силы отличается от нуля. При длине саркомера от 1,67 до 2,25 мкм, он развивает максимальную силу.

Существует предельное значение длины саркомера, при котором происходит его разрыв. Это значение равно 3,60 мкм. Чтобы не произошел разрыв, при растягивании мышечных волокон защитную функцию берет на себя соединительный филамент – титин. Благодаря своим упругим свойствам, он предотвращает чрезмерное растяжение саркомера (М.Дж.Алтер, 2001).

Жесткость

Жесткость – характеристика тела, отражающая его сопротивление изменению формы при деформирующих воздействиях (В.Б. Коренберг, 2004). Чем больше жесткость тела, тем меньше оно деформируется под воздействием силы. Жесткость тела характеризуется коэффициентом жесткости (k). Жесткость линейной упругой системы, например пружины, есть величина постоянная на всем участке деформации.

В отличие от пружины мышца представляет собой систему с нелинейными свойствами. Это связано с тем, что структура мышцы очень сложна. Возникающая в мышце сила упругости не пропорциональна удлинению. Вначале мышца растягивается легко, а затем даже для небольшого ее растяжения необходимо прикладывать все большую силу. Поэтому часто мышцу сравнивают с трикотажным шарфом, который вначале легко растягивается, а затем становится практически нерастяжимым. Иными словами, жесткость мышцы с ее удлинением возрастает. Из этого следует, что мышца представляет собой систему, обладающую переменной жесткостью. Установлено, что жесткость мышцы в активном состоянии в 4-5 раз больше жесткости в пассивном состоянии. Коэффициент жесткости мышц варьирует от 2000 до 3000 Н/м.

Вязкость

Помимо жесткости мышца обладает еще одним важным свойством – вязкостью. Вязкость – свойство жидкостей, газов и «пластических» тел оказывать неинерционное сопротивление перемещению одной их части относительно другой (смещение смежных слоев). При этом часть механической энергии переходит в другие виды, главным образом в тепло. Это свойство сократительного аппарата мышцы вызывает потери энергии при мышечном сокращении, идущие на преодоление вязкого трения. Предполагается, что трение возникает между нитями актина и миозина при сокращении мышцы. Кроме того, трение возникает между возбужденными и невозбужденными волокнами мышцы (мышечные волокна различных типов расположены в мышце в виде мозаики) из-за наличия соединения мышечных волокон коллагеновыми фибриллами. Поэтому, если возбуждены все мышечные волокна, трение должно уменьшаться. Показано, что при сильном возбуждении мышцы, ее вязкость резко снижается (Г.В. Васюков,1967).

Мышца, обладающая большей вязкостью, будет характеризоваться большей площадью «петли гистерезиса». Вы знаете, что при выполнении физических упражнений температура мышц повышается. Повышение температуры мышц связано с упруговязкими свойствами мышцы и с потерями энергии мышечного сокращения на трение. Разогрев мышц (разминка) приводит к тому, что вязкость мышц уменьшается.

Прочность

Предел прочности мышцы оценивается значением растягивающей силы, при которой происходит ее разрыв. Установлено, что предел прочности для миофибрилл равен 16-25 КПа, мышц – 0,2-0,4 МПа, фасций – 14 МПа. Долгое время считалось (Е.К. Жуков, 1969; В.М. Зациорский, 1979), что неизменность длины мышцы при ее работе в изометрическом режиме связана с растяжением сухожилий, однако А.А. Вайном (1990) было указано на то, что прочность сухожилий (предел прочности сухожилий равен 40-60 МПа) значительно превосходит прочность мышечных волокон. Поэтому в латентный период возбуждения мышцы сухожилия практически не изменяют своей длины, и, следовательно, неизменной остается длина мышечных волокон и жестко связанных с ними миофибрилл. Это возможно в том случае, если одни, более слабые элементы миофибрилл (саркомеры) будут растягиваться, а другие, более сильные – укорачиваться.

Релаксация

Релаксация мышц – свойство, проявляющееся в уменьшении с течением времени силы мышцы при ее постоянной длине.

Для оценки релаксации используют показатель – длительность релаксации (τ), то есть промежуток времени, в течение которого сила мышцы уменьшается в е раз от первоначального значения. Многочисленными исследованиями установлено, что высота выпрыгивания вверх с места зависит от длительности паузы между приседанием и отталкиванием. Чем больше эта пауза, то есть чем больше длительность работы мышцы в изометрическом режиме, тем меньше ее сила и как следствие – высота выпрыгивания.

Литература

  1. Алтер М. Дж. Наука о гибкости / М. Дж. Алтер. – Киев: Олимпийская литература. – 2001. – 421 с.
  2. Васюков Г.В. Исследование механических свойств скелетных мышц человека / Г.В. Васюков: Автореф. дис…канд. биол. наук. – М.,1967. – 28 с.
  3. Вайн А.А. Явление передачи механического напряжения в скелетной мышце / А.А. Вайн. – Тарту: Изд. Тартуского университета, 1990. – 34 с.
  4. Габуда С.П. Уточнение данных ЯМР о структуре связанной воды в коллагене с помощью сканирующей калориметрии / С. П. Габуда, А. А. Гайдаш, В. А. Дребущак, С. Г. Козлова // Журнал структурной химии, 2005.- Т.46.- № 6.– С. 1174 – 1176.
  5. Дубровский В.И., Федорова В.Н. Биомеханика. Учебник для высших и средних заведений.– М.: ВЛАДОС_ПРЕСС, 2003.&? 672 с.
  6. Жуков, Е.К. Очерки по нервно-мышечной физиологии / Е.К. Жуков.– Л.: Наука, 1969. – 288 с
  7. Зациорский В.М., Аруин А.С., Селуянов В.Н. Биомеханика двигательного аппарата человека / В.М. Зациорский, А.С. Аруин, В.Н. Селуянов. – М.: Физкультура и спорт, 1981. – 143 с.
  8. Зациорский, В.М. Биодинамика мышц / В.М. Зациорский // В кн.: Д.Д. Донской, В.М. Зациорский Биомеханика. Учебник для ин-тов физ. культуры. – М.: Физкультура и спорт, 1979б. – С. 45-51.
  9. Кичайкина, Н.Б. Биомеханика двигательных действий / Н.Б. Кичайкина, А.В. Самсонова: учебно-методическое пособие. – СПб, 2014.– 183 с.
  10. Козлов, В.И. Основы спортивной морфологии: учебное пособие для ин-тов физической культуры / В.И. Козлов, А.А. Гладышева. – М.: Физкультура и спорт, 1977. – 103 с.
  11. Козлов, И.М. Биомеханические факторы организации движений человека: Дис… докт. биол. наук.– Л., 1984.­ 307 с.
  12. Самсонова, А.В. Биомеханика мышц [Текст]: учебно-методическое пособие /А.В. Самсонова Е.Н. Комиссарова /Под ред. А.В. Самсоновой /Санкт-Петербургский гос. Ун-т физической культуры им. П.Ф. Лесгафта.- СПб,: [б.н.], 2008.– 127 с.
  13. Самсонова, А.В. Сот — структурная единица саркомера // А.В. Самсонова, Г.А. Самсонов // Труды кафедры биомеханики университета имени П.Ф.Лесгафта, 2021.- Вып.10.- С. 16-21.
  14. Самсонова А.В. Гипертрофия скелетных мышц человека: Учебное пособие.- 5-е изд. – СПб.: Кинетика, 2021.– 159 с.
  15. Ткачук М.Г., Степаник И.А. Анатомия: учебник для студентов высших учеб. заведений / М.Г. Ткачук, И.А. Степаник. – М.: Советский спорт, 2010. – 392 с.
  16. Huxley A.F., Nidergerke R. Structural changes in muscle during contraction; Interference microscopy of living muscle fibres / A.F. Huxley, // Nature,1954. – V.1973. – №. 4412. – P. 971-973.
  17. Huxley H.E., Hanson J. Changes in the cross-striations of muscle during contractions and stretch and their structural interpretation / H.E. Huxley, J. Hanson // Nature, 1954. – V. 173. – N. 4412. – P. 973–976.
  18. Pollack G.H. Muscles &? molecules: Uncovering the principles of biological motion / G.H. Pollack.– Seattle: Ebner&Sons, 1990.

Строение костей плечевого пояса руки человека с названиями в картинках: скелет, фото

Кости плечевого пояса руки человека
Кости плечевого пояса руки человека
Скелет костей плечевого пояса руки человека представляет: две пары лопаток и ключиц, которые обеспечивают опору и двигательную активность верхних конечностей.

Строение костей плечевого пояса руки человека
Строение костей плечевого пояса руки человека

Ниже вы найдете строение с названиями. Выше на картинке все подробно видно и описано. Правая и левая лопатка напоминают плоскую треугольную кость, расположенную со стороны спины. Она немного выгнута наружу по направлению от реберных дуг. Лопатка состоит из нескольких элементов:

  • Верхний угол
  • Верхний край
  • Вырезка лопатки
  • Шейка лопатки
  • Медиальный край
  • Подлопаточная ямка
  • Подсуставной бугорок
  • Латеральный край
  • Нижний угол

Строение костей плечевого пояса руки человека
Латеральный край имеет утолщение для соединения с головкой плечевой кости. Нижний угол лопатки заканчивается на уровне восьмого ребра. По его оси располагается ключевая кость, которая имеет соединение с мышечными волокнами. Подсуставной бугорок на лопатке позволяет делать круговые движения руками.

Ключица
Ключица

Еще одна трубчатая кость, относящаяся к группе плечевого сустава – это ключица. Она располагается в горизонтальном положении в грудной клетке на границе с шеей. Кость служит соединяющим звеном между грудиной и лопатками. Ключица поддерживает весь мышечный каркас плечевого пояса.

Строение мышц плечевого пояса руки, функции плеча: описание

Строение мышц плечевого пояса руки
Строение мышц плечевого пояса руки
В состав мышечной ткани плечевого пояса руки входят такие мышцы:

  • Дельтовидная
  • Надостная
  • Подостная
  • Подлопаточная
  • Большая круглая
  • Малая круглая

Вот подробное строение и функции мышц плеча и руки:

Дельтовидная мышца:

  • Это поверхностные мышечные волокна, которые находятся над плечевым суставом.
  • По форме она напоминает перевернутую латинскую буквы «Дельта», оттуда пошло ее название.
  • Структура дельтовидной мышцы состоит из трех групп: лопаточная, акромиальная и ключичная.
  • Каждая составляющая обеспечивает движение руки в разных направлениях.

Надостная мышца:

  • Напоминает форму треугольника, который находится в надостной ямке лопатки.
  • Она отвечает за отведения плеча в стороны.

Подостная мышца:

  • Напоминает по форме плоский треугольник, расположенный в подостной ямке лопатки.
  • Ее главная функция заключается в разгибание плеча в плечевом составе.

Подлопаточная мышца:

  • Находится в центральной области, между мышцами грудной клетки и плеча.
  • Она отвечает за поднятие тяжелых предметов, и разгибания плеча.

Большая круглая мышца:

  • Располагается от нижнего угла лопатки до бугорка плечевой кости.
  • По своему строению она напоминает форму квадрата, но при сокращении принимает округлую форму.
  • Ее роль заключается в разбивании плеча и вращении по круговым осям.

Малая круглая мышца:

  • Это продолжение большой круглой мышцы со сходной структурой и функционалом.
  • Ее расположение начинается в районе лопатки и доходит до большого бугорка плечевой кости.

Более подробное описание строения мышц руки человека описано на картинке ниже:

Строение мышц плечевого пояса руки

Бицепс:

Эта мышца довольно большая и толстая, представляет из себя веретенообразную мышцу, и находится она на верхней части плечевой кости, которая, в свою очередь, состоит из 2х головок — короткой и длинной. Обе эти головки начинают свое образование в районе плеча, затем, в середине плеча они объединяются в одно целое, а уже внизу они крепятся к круглому возвышению кости предплечья.

Бицепс руки

Бицепс выполняет следующие функции:

  • Функционирует как супинатор предплечья, позволяет поворачивать и перемещать ладони вверх
  • Сгибает плечо
  • Позволяет поднимать руки вперед и вверх

Лучшие упражнения на бицепс:

Упражнения для бицепса

Анатомическое строение предплечья руки человека: скелет, рисунок

Анатомическое строение предплечья руки человека
Анатомическое строение предплечья руки человека
Предплечье руки человека относится к разряду длинных костей. Его анатомическое строение простое. Скелет имеет два отдела:

  • Локтевая кость
  • Лучевая кость

Они соединены между собой межкостными перепонками. Выше на картинке это хорошо видно. Подробнее:

Локтевая кость – парный орган предплечья трехгранной формы с утолщенной структурой вверху. Локтевая кость истончается к нижней части. Она имеет три отдела:

  • Верхний отдел трубчатой кости. В этой части располагается блоковидная вырезка, имеющая два отростка: передний и задний, а также лучевая вырезка соединяющая отростки с лучевой костью.
  • Основание (тело). Отдел имеет закругление по передней части.
  • Нижний отдел трубчатой кости. В этой части располагается: головка, шиловидный отросток и суставная окружность.

По всей длине она покрыта мышечными волокнами за исключением заднего края.

Лучевая кость – парный орган предплечья трехгранной формы. Она имеет:

  • Головку — самое широкое и утолщенное место на верхнем конце кости.
  • Шейку – сужение, которое располагается под головкой.
  • Бугристость – место соединения сухожилия главной мышцы плеча.
  • Шиловидный отросток, расположенный на боковой стороне.
  • Дорсальный бугорок расположен по задней поверхности закругленного отдела трубчатой кости.
  • Запястную суставную поверхность – место соединения с костями запястья.

Главная функция костей – каркас для мышечного слоя, суставов и хрящей, которые обеспечивают двигательную активность руки.

Строение запястья руки человека: описание

Строение запястья руки человека
Строение запястья руки человека
Запястье руки человека – это отдел, расположенный между костями предплечья и пястными костями. Он имеет восемь маленьких косточек, которые разделяются на два вида: проксимальный и дистальный. Вот описание строения:

Проксимальный вид имеет четыре типа костей:

  • Ладьевидная — находится в первом ряду запястья.
  • Полулунная — расположена во втором ряду с лучевой стороны. По форме кость напоминает полумесяц, поэтому и получила такое название.
  • Трехгранная — расположена в первом ряду запястья. Имеет выпуклую поверхность.
  • Гороховидная — напоминает по форме яйцо или овал. Она располагается в толщине сухожилий.

Дистальный отдел имеет четыре типа костей:

  • Кость-трапеция имеет вогнутое строение и располагается рядом с трехгранной костью.
  • Трапециевидная кость соединяет кость – трапецию с пятью короткими трубчатыми костями.
  • Головная кость самая большая по размеру из костей запястья. Имеет шаровидную форму.
  • Крючковидная кость соединяет головчатую кость и второй ряд костей запястья.

Главная функция запястья – это круговые движения кисти и ее правильное положение.

Анатомия строения кисти руки человека: скелет, кости, мышцы

Анатомия строения кисти руки человека
Анатомия строения кисти руки человека
Скелет кисти руки человека имеет наиболее сложное строение. В состав входит 27 костей, которые разделены на группы:

  • Запястье
  • Пястье
  • Пальцы

Кости соединены между собой хрящевой тканью. Подробнее анатомия строения:

Анатомия строения кисти руки человека

Пястье – пять трубчатых костей, которые не имеет специальных названий. Их просто нумеруют римскими цифрами I – V от большого пальца к мизинцу. Структура каждой кости разделена на три отдела: головка, тело и основание. Головка соединена с костями пальцев, а основание с костями запястья.

Кости пястья сходны по суставы друг с другом. Отличие имеет только третий палец, который имеет шиловидный отросток. Все кости пястья соединены между собой фалангами. Пястье выполняет двигательную функцию и помогает удерживать предметы в руках.

Пальцы — все, кроме большого, имеют три фаланги:

  • Проксимальную
  • Среднюю
  • Дистальную

Самой длинной фалангой является проксимальная, а короткой дистальная. Средняя фаланга соединяет проксимальный и дистальный отдел.

Анатомия строения кисти руки человека

Сесамовидные кости — они располагаются в толщине сухожилий. Сесамовидные кости расположены на ладонной поверхности, но в ряде исключений могут встречаться на тыльной поверхности. Их главная функция заключается в увеличении силы плечевых мышц.

Анатомия строения кисти руки человека

Мышцы и связки — отвечают за силовые нагрузки и поднятие предметов. От мышечной ткани зависит подвижность рук и мелкая моторика пальцев. Сухожилия и связки надежно фиксируют кости в неподвижном состоянии.

Сосуды и нервы

Кости, суставы, мышцы и связки рук обильно кровоснабжаются. Кровь насыщает ткани кисти кислородом, обеспечивает высокую подвижность, быструю регенерацию тканей.

Локтевая и лучевая артерии подходят с предплечья к кисти, затем спускаются через лучезапястный сустав на ладонь и тыльную сторону кисти, образуют глубокую и поверхностную дуги. На тыльной стороне вена расходится на четыре пястные артерии, а после каждая делится еще на две пальцевые артерии, которые проходят по пальцам к ногтям. Сети мелких капилляров снабжают кровью пальцы. Обильное разветвление сосудов защищают пальцы от обильной потери крови при повреждении руки.

Иннервация руки происходит благодаря локтевому, срединному и лучевому нервам, которые своим взаимным действием обеспечивают двигательные функции, тактильную и болевую чувствительность. Множество рецепторов нервов проходят через всю руку до подушечек пальцев, сокращают и расслабляют мышцы.

Справка! Нервные окончания на пальцах настолько чувствительны, что при порезе поверхностного слоя кожи листком бумаги, рецепторы резко реагируют на попадание воздуха и человек испытывает боль сильнее, чем от пореза ножом.

Повреждение срединного нерва затрудняет сгибание и разгибание кисти, а одновременная травма связок приводит к полной утрате двигательной функции. Сжатие или травма локтевого нерва приводит к утрате отведения и приведения пальцев, в особенности теряют чувствительность нижняя часть ладони и мизинец. Лучевой нерв в ответе за чувствительность тыльной стороны кисти и отведение большого пальца. При поврежденном лучевом нерве невозможно сжать ладонь в кулак и разжать руку.

Строение большого пальца руки человека: кости и мышцы с названиями

Строение большого пальца руки человека
Строение большого пальца руки человека
Строение большого пальца руки человека: кости и мышцы с названиями.

Строение большого пальца состоит из двух фаланг:

  • Проксимальная
  • Дистальная

На конце фаланги имеется костная плоскость, которая соединяет фаланги с суставами. Большой палец имеет большое многообразие мышц в сравнении с другими пальцами:

Строение большого пальца руки человека

  • Короткая мышца, отводящая большой палец в сторону
  • Мышца противопоставляющая большой палец
  • Короткий сгибатель большого пальца
  • Мышца приводящая большой палец

В самих пальцах мышц нет вообще. Сгибательные и разгибательные движения осуществляются за счет мышц ладони и предплечья.

Строение суставов руки человека с рисунками: локтевого, плеча, запястья, пальцев

Строение суставов руки человека с рисунками
Строение суставов руки человека с рисунками
Нормальное функционирование опорно-двигательного аппарата невозможно без суставной ткани, которая покрыта синовиальной оболочкой и суставной сумкой. Вот строение суставов руки человека с рисунками — локтевого, плеча, запястья, пальцев:

Строение суставов руки человека с рисунками

Локтевой сустав:

  • Он разделяется на три отдела: лучевой, плечевой и локтевой.
  • Лучезапястный сустав представляет собой подвижное соединяющее звено костей кисти и предплечья.
  • По форме он напоминает эллипс.
  • Выполняет очень важную двигательную функцию – сгибание и разгибание кисти.
  • Сустав укреплен большим количеством связок.

Строение суставов руки человека
Строение суставов руки человека
Плечевой сустав:

  • Он соединяет кости плеча с лопатками.
  • Плечевой сустав самый подвижный сустав в теле человека, который позволяет выполнять подвижные движения без скованности.
  • Плечевой сустав позволяет совершать круговые движения, а также сгибание и разгибание руки.

Строение плечевого сустава выглядит следующим образом:

  • Суставной отросток лопатки
  • Головка плечевой кости
  • Суставная щель
  • Акромион — акромиально-ключичный сустав

Кистевых суставов много, но уступают в размерах вышеописанным. Поэтому, чтобы проще запомнить, их стоит разделить на несколько различных групп. Классификация суставов кисти выглядит так:

Строение суставов руки человека

  • Среднезапястный сустав – является соединением между первой и второй линией косточек у основания запястья.
  • Запястно-пястные сочленения – соединение двух рядов костей у запястья с косточками, которые ведут к самим пальцам.
  • Пястно-фаланговые суставы – соединение фаланг пальцев и кости пясти, ведущие к ним.
  • Межфаланговые соединения – есть на всех пальцах в количестве 2-х штук (кроме большого, так как он имеет 1 такое соединение).

Ниже описано строение сухожилий руки человека. Читайте далее.

Суставы и связки

Связочный аппарат скрепляет все косточки кисти вместе и представлен связками:

  • межсуставными,
  • коллатеральными,
  • ладонными,
  • тыльными.

Строение ладони и большого пальца устроено так, что связки и сухожилия ладонной стороны развиты сильнее, чем тыльные. Тыльные соединяют кости запястья между собой и с пястными костями, удерживают суставы в физиологической норме во время движения, защищают от травм, придают упругость, гибкость кисти руки.

Межкостные связки расположены между отдельными костями на латеральной, медиальной, тыльной и ладонной поверхностях запястья. Большее число связок прикреплено к головчатой кости. Боковая лучевая и локтевая, тыльная и ладонная лучезапястная, а также межзапястные связки удерживают лучезапястный сустав от чрезмерных движений.

Особая связка — удерживатель сгибателей, расположенная на лучевой и локтевой стороне ладонной поверхности, закрывает канал запястья, через который проходят сухожилия сгибателей пальцев, сосуды и срединный нерв.

Связки кисти руки расположены в разном направлении — дугообразно, поперечно и радиально, создают толстый фиброзный слой. Прочность и эластичность связкам обеспечивают плотные волокна соединительной ткани. При повышенном физическом усилии связки кисти могут подвергнуться растяжению, но разрывы происходят редко.

Анатомия строения руки человека: сухожилия плеча, предплечья, запястья, кисти, пальца

Анатомия строения руки человека: сухожилия
Анатомия строения руки человека: сухожилия
Сухожилия – это соединительная ткань, которая позволяет полностью передавать мышечную нагрузку. Анатомия строения руки человека — сухожилия плеча, предплечья, запястья, кисти, пальца:

Сухожилия разделяются на два слоя:

  • Глубокий
  • Поверхностный

Подробнее:

  • Каждое соединение имеет свое ложе, которое находится между мягкими тканями.
  • Сухожилия обеспечивают мягкое скольжение без трения и износа суставов.
  • От их состояния зависит способность руки выполнять свои прямые функции.
  • На ладонной части располагается наибольшая часть сухожилий.
  • Поверхностные идут к каждому пальцу руки.
  • Глубокие сухожилия заканчиваются на уровне ногтевой фаланги.
  • Сухожилия-разгибатели находятся на тыльной стороне ладони под небольшим жировым слоем.

Соединения сухожилий с мышечной тканью происходит за счет коллагеновый структур, которые сращиваются с мышечными волокнами.

А руки бывают разные

Строение рук индивидуально, как черты лица. Мужские руки отличаются от женских, молодые от старых, и так далее. Ниже приведены несколько классификаций, но они не охватывают всего спектра разнообразия рук. У руки может быть характер – и это подходящее слово, когда речь идет об их различиях. Как бы вы описали руки, которые видели сегодня? Нежные, неотёсанные, влажные, сухие?…

Формы рук

Различие в пропорциях пальцев и ладони:

Формы пальцев

И ногти различны у разных людей! Даже при одинаковом размере ногтевой пластины можно применить желаемый маникюр.

Строение кожи рук человека: фото с описанием

Строение кожи рук человека
Строение кожи рук человека
Кожа – самый длинный орган в человеческом организме. Ее основная функция заключается в защите от внешних негативных факторов. Фото с описанием вы видите выше. Вот строение кожи рук человека, она имеет три слоя:

Эпидермис – тонкий роговой слой, который достигает в толщину не более 0,05 миллиметров. Клетки эпидермиса производят кератин. В эпидермисе не присутствуют кровеносные сосуды.

Структура эпидермиса включает в себя:

  • Роговой слой
  • Блестящий слой
  • Зернистый слой
  • Шипованный слой
  • Базальный слой

В базальном слое находятся вещества, ответственные за выработку меланина. Это вещество защищает кожу от агрессивных солнечных лучей и ультрафиолета. Клетки базального слоя постоянно делятся, что способствует процессам обновления. Старые клетки видоизменяют свою форму и проходят процесс ороговения. Они постепенно отслаиваются из кожи на протяжении всей жизни человека.

Зернистый слой имеет ромбовидную форму, которая вытянута параллельно поверхности кожи.

Дерма — под ней подразумевают внутренний слой кожи, в котором расположены потожировые и сальные железы, выполняющие роль очистки организма от излишка влаги и солей.

Гиподерма — это глубокий жировой слой, который выполняет защиту от холода и служит базовой основой для остальных слоев.

Стоит отметить:

Кожа ладони имеет отличительные особенности от всех остальных участков тела:

  • Повышенная износостойкость
  • На ладони нет волосяных фолликул и сальных желез
  • На коже ладоней расположено множество потовых желез

Кожа рук – это главный защитник нашего организма, поэтому ей нужно всегда уделять особое внимание.

Функции кисти

Интересно! Большое количество нервных окончаний расположены на кончиках пальцев, рецепторы обеспечивают тактильные, температурные и болевые ощущения. Люди с нарушением зрения тактильно и сенсорно воспринимают мир через пальцы.

Слаженная работа подвижных соединений костей кисти, связочный и мышечный аппарат, снабженные нервами и кровеносными сосудами позволяют человеку выполнять множество разных действий.

Основные функции:

  1. Захват и перемещение предметов. Основные виды захватов — шаровой, клочковой, плоскостной, цилиндрический, межпальцевый и щипковый.
  2. Жестикуляционная — участие в выражении эмоций. Человек использует жестикуляцию для эмоционального и точного объяснения своей точки зрения, жестами пользуются глухонемые люди для общения.
  3. Осязательная — познание окружающего мира. Тактильное осязание позволяет различать форму, размер, вес, консистенцию, температуру, расположение предметов.

Строение ногтей на руках человека: описание

Строение ногтей на руках человека
Строение ногтей на руках человека
Ногти человека — это самая уникальная часть человеческого тела. Анатомическое строение сложное, но изучая его, можно узнать много интересного. Тело ногтя находится в ногтевом ложе. Скорость роста до 4 мм в месяц. Ноготь — это плотное, блестящее и эластичное покрытие, которое имеет розовый оттенок, если человек ничем не болеет. Подробнее про строение ногтя читайте в другой статье на нашем сайте по данной ссылке.

Понравилась статья? Поделиться с друзьями: